
 

 

Module 4: Arithmetic Logic Unit (ALU) Design 
Module Objective: This module offers an exhaustive exploration into the design and 
fundamental operation of the Arithmetic Logic Unit (ALU), the central computational engine 
of a Central Processing Unit (CPU). It thoroughly covers the hardware implementation of 
basic arithmetic operations, with a particular focus on the intricate design of integer 
multiplication and division units. The module then transitions to a comprehensive discussion 
of floating-point number representation and the complexities of floating-point arithmetic, 
culminating in an in-depth analysis of the universally adopted IEEE 754 standard and its 
profound implications for numerical accuracy. 

 
4.1 General ALU Design Principles 
The Arithmetic Logic Unit (ALU) stands as the computational heart of any digital computer. 
It is a highly specialized combinational digital circuit, meaning its outputs are solely 
determined by its current inputs, without any memory of past inputs. The ALU is solely 
responsible for performing all the basic arithmetic and logical operations requested by the 
CPU's control unit, serving as the essential workhorse that executes the core computations 
of a program. 

ALU Function: Performing Arithmetic and Logical Operations 

The ALU's functional repertoire can be broadly categorized into two major groups: 

1. Arithmetic Operations: These operations perform standard mathematical 
computations on numerical data. The fundamental operations almost universally 
supported by an ALU include: 

○ Addition: This is the most basic arithmetic operation, summing two binary 
numbers. All other arithmetic operations often rely on or are derived from 
addition (e.g., subtraction via two's complement addition). 

○ Subtraction: Finding the difference between two binary numbers. In modern 
ALUs, subtraction is typically implemented by taking the two's complement of 
the subtrahend (the number being subtracted) and then performing addition. 
For instance, A - B is computed as A + (-B), where -B is the two's 
complement of B. 

○ Increment: Adding the value 1 to a number. This is a very common 
operation, frequently used for loop counters or memory address manipulation. 
It can be implemented as a specialized adder or by simply adding a constant 
1. 

○ Decrement: Subtracting the value 1 from a number. Similar to increment, this 
is frequently used for counters. 

○ While more complex operations like multiplication and division can be 
achieved through repeated additions and subtractions, for performance 
reasons, modern CPUs often employ dedicated, specialized hardware units 
(like integer multipliers and dividers) that are separate from or highly 



integrated with the main ALU for these operations, as they are too complex to 
be handled bit-serially by a general-purpose ALU without substantial 
performance penalties. However, the basic arithmetic capabilities 
(add/subtract) are always core to the ALU. 

2. Logical Operations: These operations perform bitwise manipulations on binary 
data. Unlike arithmetic operations, they treat their inputs as collections of individual 
bits rather than numerical values. They are indispensable for tasks such as setting or 
clearing specific bits, extracting parts of a binary word, or performing comparisons. 
Common logical operations include: 

○ AND: The bitwise logical AND operation. For each corresponding bit position 
in the two input operands, the output bit is 1 if and only if both input bits are 1; 
otherwise, it is 0. It is often used for "masking" or clearing specific bits (e.g., 
ANDing with 00001111 would clear the upper four bits of an 8-bit number). 

○ OR: The bitwise logical OR operation. For each corresponding bit position, 
the output bit is 1 if at least one of the corresponding input bits is 1; otherwise, 
it is 0. It is often used for "setting" specific bits (e.g., ORing with 10000000 
would set the most significant bit). 

○ NOT (Invert/Complement): The bitwise logical NOT operation. This is a 
unary operation (takes only one input). It inverts every bit of its operand: a 0 
becomes a 1, and a 1 becomes a 0. It is crucial for generating two's 
complement numbers (which involves inverting all bits and then adding 1). 

○ XOR (Exclusive OR): The bitwise logical XOR operation. For each 
corresponding bit position, the output bit is 1 if the input bits are different (one 
is 0 and the other is 1); otherwise, it is 0. XOR can be used to toggle specific 
bits, or to compare two values for equality (if two numbers are identical, their 
XOR result is zero). 

○ Shift Operations: These operations move the bits within an operand to the 
left or right by a specified number of positions. They are very efficient for 
multiplication and division by powers of 2. 

■ Logical Shift Left (LSL): Shifts all bits to the left. The leftmost bit(s) 
are discarded, and the newly vacated positions on the right are filled 
with 0s. This is equivalent to multiplying an unsigned integer by 2N for 
N shifts. 

■ Logical Shift Right (LSR): Shifts all bits to the right. The rightmost 
bit(s) are discarded, and the newly vacated positions on the left are 
filled with 0s. This is equivalent to dividing an unsigned integer by 2N 
for N shifts. 

■ Arithmetic Shift Right (ASR): Shifts all bits to the right. The rightmost 
bit(s) are discarded. Crucially, the newly vacated positions on the left 
are filled with a copy of the original sign bit (the most significant bit). 
This preserves the sign of a signed (two's complement) integer while 
performing division by powers of 2. 

○ Rotate Operations: These are similar to shifts, but bits shifted off one end 
"wrap around" and reappear at the other end of the number, meaning no bits 
are lost. 

■ Rotate Left (ROL): Bits shift left, the leftmost bit moves to the 
rightmost position. 



■ Rotate Right (ROR): Bits shift right, the rightmost bit moves to the 
leftmost position. 

■ Rotate with Carry (RC/RCR/RCL): These rotations involve the CPU's 
Carry Flag (a status bit), effectively making the rotation operate on one 
more bit than the operand's width, which is useful in some 
multi-precision arithmetic operations. 

Inputs and Outputs of an ALU 

A typical ALU communicates with the rest of the CPU via several input and output lines: 

● Operands (A and B): These are the primary data inputs to the ALU. An ALU is 
generally designed to perform operations on two operands simultaneously. The 
number of bits in these operands defines the data path width of the ALU (e.g., a 
32-bit ALU has 32 input lines for A and 32 for B). These operands typically come 
from CPU registers or directly from memory (via data buses and temporary buffers). 

● Function Select Code (Opcode/Control Signals): This is a set of control input lines 
that dictate to the ALU which specific operation it should perform at any given 
moment. These signals are generated by the CPU's control unit after it decodes a 
machine instruction. For example, if an ALU supports 16 different operations (e.g., 
ADD, SUB, AND, OR, LSL, etc.), it would require at least log_2(16)=4 select lines. 
These lines drive internal multiplexers and enable/disable various functional units 
within the ALU. 

● Result (F): This is the main output of the ALU, representing the outcome of the 
performed operation. Its width matches the data path width of the ALU (e.g., 32-bit 
result for a 32-bit ALU). 

● Status Flags (Condition Codes): These are single-bit output signals (typically 1 bit 
each) that provide supplementary information about the result of the operation. 
These flags are crucial for implementing conditional branches and other control flow 
mechanisms in a program, allowing the CPU to make decisions based on the 
outcome of arithmetic or logical computations. The most common status flags 
include: 

○ Zero Flag (Z): This flag is set to 1 if the result of the operation is exactly zero. 
It is cleared to 0 otherwise. This is critical for checking for equality or 
determining if a counter has reached zero. 

○ Carry Flag (C): This flag is set to 1 if an arithmetic operation produced a 
carry-out from the most significant bit (for addition) or a borrow into the most 
significant bit (for subtraction). It is crucial for multi-precision arithmetic 
(adding numbers larger than the ALU's bit width) and for certain shift/rotate 
operations. 

○ Sign Flag (N): This flag is set to 1 if the result of the operation is negative. In 
two's complement representation, this means the most significant bit (MSB) of 
the result is 1. It is cleared to 0 if the result is positive. This allows for 
checking the sign of a number after computation. 

○ Overflow Flag (V): This flag is set to 1 if a signed arithmetic operation 
resulted in an overflow. Overflow occurs when the true result of an operation 



exceeds the largest positive or smallest negative number that can be 
represented within the given number of bits using signed (two's complement) 
representation. This is distinct from a carry-out; an overflow indicates that the 
result is incorrect for signed interpretation, even if a carry did or did not occur. 
For example, adding two large positive numbers could result in a negative 
number if an overflow occurs. 

Basic Logic Gates as Building Blocks: AND, OR, NOT, XOR 

The ALU, at its most fundamental level, is composed of interconnected digital logic gates. 
These gates are the atomic components that perform elementary Boolean logic functions on 
binary inputs. 

● AND Gate: Produces a 1 output only if all its inputs are 1. Otherwise, the output is 0. 
● OR Gate: Produces a 1 output if any of its inputs are 1. Only if all inputs are 0 is the 

output 0. 
● NOT Gate (Inverter): Takes a single input and produces its opposite. If the input is 0, 

the output is 1; if the input is 1, the output is 0. 
● XOR Gate (Exclusive OR): Produces a 1 output if its inputs are different. If the 

inputs are the same (both 0 or both 1), the output is 0. 

These basic gates are then combined in various configurations to construct more complex 
functional units within the ALU, such as full adders, multiplexers, decoders, and specialized 
bit-slice logic for each operation. For example, the logical AND unit of a 32-bit ALU would 
simply be 32 independent 2-input AND gates operating in parallel, one for each bit position. 

Full Adder and Ripple-Carry Adder: Basic Arithmetic Circuits 

The ability to add binary numbers is the cornerstone of all arithmetic operations within the 
ALU. 

● Half Adder: This is the most elementary adding circuit. It takes two single binary 
inputs (A and B) and produces two outputs: a Sum (S) and a Carry-out (Cout). It 
cannot accept a carry-in from a previous stage of addition. Its logic is: 

○ S=AoplusB (XOR gate) 
○ Cout=AcdotB (AND gate) 

● Full Adder: The Full Adder is the fundamental building block for constructing 
multi-bit binary adders. It takes three single binary inputs: two data bits (A and B) and 
a Carry-in (Cin) from the less significant bit position. It produces two outputs: a Sum 
(S) and a Carry-out (Cout) to the next more significant bit position. A full adder can 
be built using two half adders and an OR gate. Its logic is: 

○ S=AoplusBoplusCin 
○ Cout=(AcdotB)+(Cincdot(AoplusB)) (This expression means: a carry-out is 

generated if both A and B are 1, OR if Cin is 1 AND one of A or B is 1.) 
● Ripple-Carry Adder (RCA): The simplest and most straightforward way to construct 

an N-bit binary adder is by cascading N single-bit full adders. The Carry-out (Cout) of 
each full adder is directly connected as the Carry-in (Cin) to the immediately next 
more significant full adder. 



○ Operation: The addition effectively proceeds bit by bit, starting from the least 
significant bit (LSB) position and propagating the carry signal sequentially 
towards the most significant bit (MSB). The sum bit (S_i) and carry-out bit 
(Cout_i) for bit position i cannot be fully determined until the carry-in (Cin_i) 
from the previous position (i−1) is available. 

○ Advantage: This design is remarkably simple and requires a minimal amount 
of hardware (gates). 

○ Disadvantage: Speed is its major drawback. The critical path (the longest 
delay path from input to output) is determined by the "ripple" effect of the 
carry signal. For an N-bit adder, the carry might have to propagate through all 
N stages. This means the sum and carry outputs for the most significant bits 
are not stable until the carries have cascaded through all the preceding 
stages. This cumulative delay, known as carry propagation delay, can 
significantly limit the clock speed of the CPU, especially for wide (e.g., 32-bit 
or 64-bit) adders. 

Look-Ahead Carry Adder: Improving Adder Speed 

To overcome the inherent speed limitation of the ripple-carry adder, more sophisticated 
adder designs were developed. The Look-Ahead Carry Adder (LCA) is a widely used 
technique to significantly accelerate the carry propagation process. 

● Motivation: The core problem in the RCA is that the carry-in for a given stage (C_i) 
depends on the carry-out from the previous stage (C_i−1), which depends on C_i−2, 
and so on. This sequential dependency creates delay. The LCA aims to compute the 
carries for multiple stages in parallel or at least much faster, by generating them 
directly from the input bits. 

● Principle: The LCA introduces two new signals for each bit position i: 
○ Generate (G_i): A carry is generated at position i if A_i and B_i are both 1. 

This carry originates at this stage, irrespective of any carry-in from previous 
stages. G_i=A_icdotB_i. 

○ Propagate (P_i): A carry is propagated through position i if a carry-in (C_i) 
would cause a carry-out (C_i+1). This happens if either A_i or B_i (or both) is 
1. A common definition for P_i is P_i=A_ioplusB_i (if only one input is 1, it will 
propagate a carry). Another common definition is P_i=A_i+B_i (if at least one 
input is 1, it will propagate a carry). The choice often depends on the specific 
logic circuit. 

○ Using these G and P signals, the carry-out for any stage (C_i+1) can be 
expressed directly in terms of the initial carry-in (C_0) and the G and P 
signals of preceding stages. 

■ C_1=G_0+(P_0cdotC_0) 
■ C_2=G_1+(P_1cdotC_1)=G_1+(P_1cdot(G_0+(P_0cdotC_0)))=G_1+

P_1cdotG_0+P_1cdotP_0cdotC_0 
■ C_3=G_2+(P_2cdotC_2)=G_2+P_2cdotG_1+P_2cdotP_1cdotG_0+P

_2cdotP_1cdotP_0cdotC_0 
○ Notice the key aspect: C_2, C_3, and higher carries are computed directly 

using a two-level AND-OR logic from the input bits (A_i,B_i) and the initial 



C_0. There is no ripple delay for these carry computations. This parallel 
computation drastically reduces the overall delay. 

● Advantage: Significantly faster addition performance, especially for wider data 
paths, because the carry logic is not sequential. This is critical for high-performance 
CPUs. 

● Disadvantage: Requires considerably more complex hardware (a larger number of 
gates and more intricate interconnections) compared to a simple ripple-carry adder. 
For very wide adders (e.g., 64-bit), a single, monolithic LCA becomes too large and 
complex. Thus, practical LCAs are often implemented in a hierarchical manner, 
where smaller LCAs generate carries within blocks, and another level of look-ahead 
logic generates carries between blocks. 

Multi-bit ALUs: Combining Basic Units to Handle Wider Data Paths 

A complete ALU designed for a modern CPU is a highly integrated circuit capable of 
performing various operations on data words that are typically 8, 16, 32, or 64 bits wide. 

● A multi-bit ALU is constructed by arranging multiple identical single-bit ALU slices 
in parallel. Each slice is responsible for processing one specific bit position of the 
input operands. 

● Each single-bit ALU slice is a sophisticated combinational circuit itself. It incorporates 
the necessary logic gates (AND, OR, XOR, NOT) for logical operations, a full adder 
for arithmetic operations, and potentially components for shift/rotate operations for its 
specific bit position. 

● All these single-bit slices receive the same function select control signals from the 
CPU's control unit. These signals simultaneously activate the appropriate functional 
units (e.g., enable the adders, disable the logical gates, or vice-versa) across all 
slices. 

● At the output stage, a large multiplexer (or a network of multiplexers) receives the 
results from the various functional units (adder output, logical AND output, shifter 
output, etc.) within the ALU. The function select signals then control this multiplexer 
to route the correct computed result to the main ALU output. 

● The status flags (Zero, Carry, Sign, Overflow) are derived from logic that monitors 
the bits of the final result and/or the carry signals from the most significant adder 
stage. 

○ The Zero flag is set if all bits of the result are 0. 
○ The Sign flag is directly the MSB of the result (for two's complement). 
○ The Carry flag is the carry-out from the MSB of the adder/subtractor. 
○ The Overflow flag is determined by examining the carries into and out of the 

MSB of the adder/subtractor. For signed addition, overflow occurs if (Carry-in 
to MSB) ne (Carry-out from MSB). 

4.2 Integer Multiplication Design 
Integer multiplication, at its core, is a process of repeated addition and shifting. While simple 
in concept, its efficient hardware implementation for speed and area is a complex design 
challenge. 



Basic Principles of Multiplication: Repeated Addition 

Let's consider multiplying two unsigned binary numbers: a Multiplicand (M) and a Multiplier 
(Q). If the multiplicand is N bits long and the multiplier is N bits long, the product can be up to 
2N bits long. 

The manual "long multiplication" method illustrates the principle: 

   M (Multiplicand) 

x   Q (Multiplier) 

------------------ 

    P0 = M * Q0 (Q0 is the LSB of Q) 

   P1 = M * Q1  (shifted left by 1) 

  P2 = M * Q2   (shifted left by 2) 

  ... 

------------------ 

  Product 

 

Each "partial product" (P0, P1, P2, etc.) is either zero (if the corresponding multiplier bit Q_i 
is 0) or a shifted copy of the Multiplicand (if Q_i is 1). The final product is the sum of all these 
partial products. 

Hardware Implementation of Unsigned Multiplication 

● Array Multiplier (Combinational/Parallel Implementation): 
○ Concept: An array multiplier is a purely combinational circuit designed to 

compute the product in a single clock cycle (after a propagation delay through 
its gates). It achieves this by generating all partial products simultaneously 
and then summing them up in parallel using a dedicated network of adders. 

○ Structure: For an N-bit multiplicand and an N-bit multiplier, an array multiplier 
consists of: 

■ N x N AND gates: Each AND gate computes one bit of a partial 
product. Specifically, AND(M_j,Q_i) computes the jth bit of the ith 
partial product. 

■ A Matrix of Adders: The outputs of these AND gates (the partial 
product bits) are then fed into a grid-like arrangement of full adders. 
These adders accumulate the partial products diagonally. The simplest 
form uses ripple-carry adders in each row, summing partial products 
sequentially. More advanced array multipliers use Carry-Save Adders 
(CSAs) to speed up the partial product accumulation. A CSA takes 
three inputs (two numbers and a carry-in) and produces two outputs (a 



sum and a carry-out) without propagating the carry, thus delaying 
carry propagation until the final addition stage. 

○ Advantages: 
■ Extremely Fast: The product is available after a fixed combinational 

logic delay. There are no iterative clock cycles involved once the 
inputs are stable. This makes them ideal for applications requiring 
very high throughput multiplication, such as in high-performance 
CPUs or Digital Signal Processors (DSPs). 

○ Disadvantages: 
■ High Hardware Cost: The number of gates and adders grows 

quadratically with the input bit width (roughly N2). For a 32-bit 
multiplier, this means hundreds of AND gates and hundreds of full 
adders, consuming significant silicon area and power. This makes 
large array multipliers costly to implement. 

○ Analogy: Imagine drawing a multiplication table on paper. An array multiplier 
essentially has dedicated hardware (an AND gate and adder) for every single 
entry in that table, calculating them all simultaneously. 

● Sequential Multiplier (Iterative/Sequential Implementation): 
○ Concept: A sequential multiplier computes the product iteratively, usually 

over N clock cycles (for N-bit operands). It uses a single adder, some 
registers, and shifters, much like how you would perform long multiplication 
by hand. It reuses the same hardware components in each step. 

○ Structure: A typical sequential multiplier involves: 
■ Multiplicand Register: Stores the Multiplicand (M). 
■ Multiplier Register (Q): Stores the Multiplier (Q). This register is 

typically shifted right during the process. 
■ Accumulator / Product Register (A): A register, often twice the width 

of the operands, used to store the partial product being accumulated. 
It is often paired with the Multiplier register. 

■ Adder: A standard N-bit adder (e.g., a Look-Ahead Carry Adder) to 
perform the addition of the Multiplicand to the partial product. 

■ Shifters: To shift the Multiplier (right) and the partial 
product/accumulator (right). 

■ Control Unit: A finite state machine or sequential logic that controls 
the sequence of operations (add/shift) over N clock cycles. 

○ Algorithm (Simplified for unsigned N-bit Multiplier): 
■ Initialize Product/Accumulator register (A) to 0. 
■ Initialize Multiplier register (Q) with the Multiplier. 
■ For N clock cycles (or steps): 

a. Check LSB of Multiplier (Q0): Look at the least significant bit of the 
Multiplier register. 
b. Add/No Add: 
* If Q_0=1, add the Multiplicand (M) to the Accumulator (A). 
* If Q_0=0, do nothing (effectively add 0). 
c. Shift: 
* Shift the Multiplier register (Q) one bit to the right (the LSB is 
discarded, the next bit becomes the new LSB). 
* Shift the combined Accumulator-Multiplier register pair (A and Q 



together) one bit to the right. The bit shifted out of A's LSB goes into 
Q's MSB. This efficiently merges the partial product with the shifting of 
the multiplier bits. 

■ After N cycles, the final product is contained in the combined 
Accumulator and Multiplier registers. 

○ Advantages: 
■ Low Hardware Cost: Reuses the same adder and registers multiple 

times, leading to a much smaller and more area-efficient hardware 
implementation compared to an array multiplier. 

○ Disadvantages: 
■ Slower: Takes N clock cycles to complete the multiplication (for N-bit 

operands). This means an N-bit sequential multiplier is N times slower 
than an N-bit array multiplier. 

Booth's Algorithm: Efficient Multiplication for Signed (Two's Complement) Numbers 

Booth's algorithm is a powerful technique for multiplying signed binary numbers, specifically 
those represented in two's complement format. It's often more efficient than standard 
sequential multiplication, particularly when the multiplier contains long strings of 0s or 1s. 

● Motivation: Standard unsigned multiplication algorithms need special handling for 
signed numbers (e.g., converting to unsigned, multiplying, then adjusting the sign of 
the product). Booth's algorithm inherently handles two's complement and also aims 
to reduce the number of addition/subtraction operations. A sequence of '1's in a 
binary number (e.g., ...011110...) can be thought of as ...100000... - ...000010.... This 
observation is key. 

● Principle: Booth's algorithm examines pairs of bits in the multiplier, including an 
implied bit 0 to the right of the least significant bit. This allows it to identify strings of 
1s or 0s and perform fewer operations. 

○ It uses the following rules, considering the current multiplier bit (Q_i) and the 
bit to its right (Q_i−1): 

■ If Q_iQ_i−1 is 0 0: No operation (shift only). 
■ If Q_iQ_i−1 is 0 1: Add Multiplicand (M) to the partial product. Then 

shift. This signifies the start of a string of 1s (e.g., ...01...). 
■ If Q_iQ_i−1 is 1 0: Subtract Multiplicand (M) from the partial product. 

Then shift. This signifies the end of a string of 1s (e.g., ...10...). 
■ If Q_iQ_i−1 is 1 1: No operation (shift only). This signifies being within 

a string of 1s. 
○ The shifts involved are arithmetic right shifts to preserve the sign of the partial 

product. 
● Advantages: 

○ Directly Handles Signed Numbers: Multiplies two's complement numbers 
correctly without requiring separate sign handling or conversion to unsigned 
magnitudes. 

○ Potentially Faster: Can significantly reduce the number of 
additions/subtractions compared to simple sequential multiplication, 



especially when the multiplier contains long sequences of identical bits (e.g., 
0000, 1111). For example, multiplying by 00111100 requires only two 
operations (subtract M, add M shifted) instead of four additions. 

● Disadvantages: 
○ More Complex Control Logic: The logic to implement Booth's algorithm 

(decoding the bit pairs and controlling add/subtract/shift operations) is more 
complex than a simple sequential multiplier. 

○ Performance Variability: While it can be faster in some cases, for multipliers 
with alternating 0s and 1s (e.g., 10101010), it might not offer much advantage 
and could even be slightly slower due to the overhead of the more complex 
control. 

4.3 Integer Division Design 
Integer division is fundamentally the inverse of multiplication, involving repeated subtraction. 
Like multiplication, efficient hardware implementation of division is complex and iterative. 

Basic Principles of Division: Repeated Subtraction 

Similar to manual long division, binary division involves iteratively determining quotient bits 
by seeing if the divisor can be subtracted from a portion of the dividend. 

Let's divide a Dividend (N) by a Divisor (D) to get a Quotient (Q) and Remainder (R). 

N=QtimesD+R, where $0 \\le R \< D$. 

The process in binary long division involves: 

1. Aligning the divisor with the most significant part of the dividend. 
2. Attempting to subtract the divisor. 
3. If successful (result is non-negative), the corresponding quotient bit is 1. The result 

becomes the new partial remainder. 
4. If unsuccessful (result is negative), the corresponding quotient bit is 0. The partial 

remainder does not change (or is restored). 
5. Shift the partial remainder left and repeat the process. 

Hardware Implementation of Unsigned Division 

Sequential division algorithms are generally used in hardware, mimicking the manual 
process over several clock cycles. 

● Restoring Division Algorithm: 
○ Concept: This algorithm directly follows the manual long division procedure. 

In each step, it subtracts the divisor from the current partial remainder. If the 
subtraction results in a negative value (meaning the divisor was too large for 
that partial remainder), the original partial remainder is "restored" (by adding 
the divisor back), and the quotient bit for that position is set to 0. If the 
subtraction results in a non-negative value, the result becomes the new 
partial remainder, and the quotient bit is 1. 



○ Structure: Requires: 
■ Registers: A register for the Dividend, a register for the Divisor, a 

register for the Quotient, and a register to hold the Remainder (often 
initialized with the Dividend). 

■ Adder/Subtractor: To perform the subtraction (and restoration if 
needed). 

■ Shifters: To shift the Remainder left and the Quotient bits into 
position. 

■ Control Unit: To manage the iterative steps. 
○ Algorithm (Simplified for unsigned N-bit numbers): 

■ Initialize the Remainder register (R) with the Dividend. 
■ Initialize the Quotient register (Q) to 0. 
■ Initialize the Divisor register (D) with the Divisor. 
■ For N iterations (where N is the number of bits): 

a. Left shift the Remainder register (R) by one bit. (This brings down 
the next bit of the original dividend). 
b. Perform a "trial subtraction": R_temp=R−D. 
c. Check Result: 
* If R_tempge0 (non-negative): This means the divisor fits. Set the 
least significant bit of the Quotient register (Q_0) to 1. Update the 
Remainder: R=R_temp. 
* If $R\_{temp} \< 0$ (negative): This means the divisor doesn't fit. Set 
the least significant bit of the Quotient register (Q_0) to 0. Restore the 
Remainder: R=R+D (effectively undoing the trial subtraction). 
d. Left shift the Quotient register (Q) by one bit to prepare for the next 
quotient bit. 

■ After N iterations, the Quotient register holds the final quotient, and 
the Remainder register holds the final remainder. 

○ Advantages: Conceptually simple and directly mimics manual long division, 
making it easier to understand. 

○ Disadvantages: 
■ Slower: The "restoring" step (adding the divisor back if the subtraction 

was negative) adds an extra operation cycle whenever a trial 
subtraction fails. This can add significant time, especially if many trial 
subtractions result in negative numbers. 

■ Can take up to 2N operations (N shifts + N subtractions, potentially N 
restorations) in the worst case. 

● Non-Restoring Division Algorithm (More Efficient): 
○ Concept: This algorithm improves upon restoring division by eliminating the 

"restoring" step, making it faster. Instead of undoing a negative result, it uses 
the negative remainder directly in the next iteration, but changes the 
operation to addition instead of subtraction. 

○ Algorithm (Simplified for unsigned N-bit numbers): 
■ Initialize Remainder register (R) with Dividend, Quotient register (Q) to 

0, Divisor register (D) with Divisor. 
■ Initial Step (outside loop): Left shift R by one bit. 
■ For N iterations: 

a. Decide Operation: 



* If the Remainder (R) is currently negative (or was negative from the 
previous iteration, meaning the previous subtraction failed), ADD the 
Divisor (D) to the Remainder: R=R+D. 
* If the Remainder (R) is currently non-negative (or was non-negative 
from the previous iteration, meaning the previous subtraction 
succeeded), SUBTRACT the Divisor (D) from the Remainder: R=R−D. 
b. Set Quotient Bit: 
* If the result of the operation in step (a) is non-negative: Set the LSB 
of the Quotient register (Q_0) to 1. 
* If the result of the operation in step (a) is negative: Set the LSB of 
the Quotient register (Q_0) to 0. 
c. Left shift the Quotient register (Q) by one bit. 
d. Prepare for next iteration: If this is not the last iteration, left shift the 
Remainder (R) by one bit. 

■ Final Adjustment (after N iterations): If the final Remainder (R) is 
negative, add the Divisor (D) back to it one last time to make it 
positive. This one final restoration is sometimes needed. 

○ Advantages: 
■ Faster: Eliminates the extra "restore" cycle. In each iteration, only one 

arithmetic operation (add or subtract) is performed, reducing the total 
execution time compared to restoring division. 

○ Disadvantages: 
■ More Complex Logic: The control logic to decide whether to add or 

subtract, and to handle the final remainder adjustment, is more 
intricate than restoring division. 

Signed Division Considerations: Handling Signs of Dividend, Divisor, Quotient, and 
Remainder 

Most hardware division units simplify the design by performing unsigned division internally. 
The signs of the final quotient and remainder are then determined based on the signs of the 
original dividend and divisor using predefined rules. This avoids the complexity of two's 
complement arithmetic within the core division algorithm. 

● Rules for Signs: 
1. Quotient Sign: 

■ If the original Dividend and Divisor have the same sign (both positive 
or both negative), the Quotient will be positive. 

■ If the original Dividend and Divisor have different signs (one positive 
and one negative), the Quotient will be negative. 

2. Remainder Sign: 
■ The sign of the Remainder is typically defined to be the same as the 

sign of the original Dividend. This is a convention that simplifies 
number theory consistency. 

● Typical Implementation Strategy for Signed Division: 



1. Convert to Absolute Values: Take the absolute (unsigned) value of both the 
Dividend and the Divisor. Store their original signs separately. 

2. Perform Unsigned Division: Execute the unsigned division algorithm (either 
restoring or non-restoring) using these absolute values. This will yield an 
unsigned quotient and an unsigned remainder. 

3. Adjust Quotient Sign: Apply the sign rule for the quotient. If the final quotient 
should be negative, convert the unsigned quotient result to its two's 
complement representation. 

4. Adjust Remainder Sign: Apply the sign rule for the remainder. If the original 
Dividend was negative, convert the unsigned remainder result to its two's 
complement representation. 

This approach ensures that the division logic itself only deals with positive numbers, and the 
sign correction is applied as a final step, simplifying the hardware design. 

4.4 Floating Point Arithmetic 
While integers are excellent for exact counting, they are inadequate for representing a vast 
range of numbers encountered in scientific, engineering, and graphical applications: 
numbers that are very large, very small, or contain fractional components. Floating-point 
numbers address this limitation by adopting a system analogous to scientific notation. 

Motivation for Floating Point Numbers: Representing Very Large, Very Small, and 
Fractional Numbers 

● Representation of Fractional Values: Unlike integers, floating-point numbers can 
accurately represent values with decimal (or binary) fractions, such as 3.14159, 
0.001, or 2.718. This is indispensable for calculations that involve measurements, 
percentages, or non-whole quantities. Fixed-point numbers can represent fractions 
but have a limited range and fixed decimal point. 

● Representation of Very Large Numbers: Floating-point numbers use an exponent 
to scale a base number, much like scientific notation (Mtimes10E). This allows them 
to represent extremely large magnitudes, such as the number of atoms in a mole 
(6.022times1023) or astronomical distances, which would overflow even a 64-bit 
integer. 

● Representation of Very Small Numbers: Conversely, they can represent numbers 
incredibly close to zero, such as the mass of an electron (9.109times10−31textkg) or 
a tiny electrical current. These small values would underflow to zero in fixed-point or 
integer systems. 

● Dynamic Range: The exponential scaling inherent in floating-point representation 
provides an enormous "dynamic range" – the ratio between the largest and smallest 
non-zero numbers that can be represented. This allows calculations to span many 
orders of magnitude while maintaining a relatively consistent level of relative 
precision across that range. 

Structure of a Floating Point Number: Sign, Exponent, Mantissa (Significand) 



A binary floating-point number in a computer is typically composed of three distinct parts, 
inspired by the scientific notation StimesMtimesBE (Sign times Mantissa times Base 
textExponent): 

1. Sign (S): This is a single bit that indicates the polarity of the number. 
○ 0 typically represents a positive number. 
○ 1 typically represents a negative number. 

2. Exponent (E): This field represents the power to which the base (almost always 2 
for binary floating-point numbers) is raised. This exponent determines the 
"magnitude" of the number by "floating" the binary (or decimal) point. A large 
exponent shifts the binary point far to the right, making a large number; a large 
negative exponent shifts it far to the left, making a very small number. 

3. Mantissa (M) or Significand: This field represents the significant digits or the 
"precision" of the number. It's the fractional part of the number, typically normalized to 
have a leading 1 (or 0, for special cases) before the binary point. The more bits 
allocated to the mantissa, the higher the precision of the floating-point number. 

The numerical value of a floating-point number is generally calculated using the formula: 

textValue=(−1)StimestextMantissatimes2textTrueExponent 

Normalization: Standardizing the Mantissa 

Normalization is a crucial step in floating-point representation that ensures a unique binary 
representation for most numbers and maximizes the precision within the available bits. 

● Principle: For a non-zero binary floating-point number, it is always possible (and 
desirable) to shift the mantissa bits and adjust the exponent such that the binary 
point is immediately to the right of the first non-zero bit. In binary, this means the 
mantissa will always have a leading '1' before the binary point (e.g., 1.xxxx_2). 

● The "Implied Leading 1" (Hidden Bit): Since the first bit of a normalized binary 
mantissa is always 1, there's no need to store it explicitly in memory. This "implied 
leading 1" (or "hidden bit") effectively gives an extra bit of precision for the mantissa 
without consuming any storage space. For example, if a mantissa field is 23 bits, with 
the implied 1, it provides 24 bits of precision. 

● Example: 
○ The binary number 101.11_2 is equivalent to 1.0111_2times22. 
○ The binary number 0.00101_2 is equivalent to 1.01_2times2−3. 

In both cases, the mantissa is shifted until it is in the form 1.xxxx..._2. The '1' 
before the binary point is implied, and only the fractional part (xxxx...) is 
stored. 

Bias in Exponent: Representing Both Positive and Negative Exponents 

The exponent field in floating-point numbers typically uses a biased representation (also 
called "excess-K" or "excess-N" representation) rather than two's complement for handling 
both positive and negative exponents. 



● Motivation: Standard binary number systems (like unsigned or two's complement) 
have specific ranges and complexities for signed comparisons. By adding a fixed 
"bias" value to the true exponent, the entire range of exponents (positive and 
negative) is mapped to a range of positive unsigned integers. This simplifies 
hardware design, particularly for comparing floating-point numbers. 

● Principle: A constant "bias" value is chosen. The actual numerical exponent (the "true 
exponent") has this bias added to it before being stored in the exponent field. 
textStoredExponent=textTrueExponent+textBias 
To retrieve the true exponent: 
textTrueExponent=textStoredExponent−textBias 

● Example: If the bias is 127 (as in IEEE 754 single-precision): 
○ A true exponent of 0 would be stored as 0+127=127. 
○ A true exponent of +1 would be stored as 1+127=128. 
○ A true exponent of -1 would be stored as −1+127=126. 
○ A true exponent of -126 (the minimum) would be stored as −126+127=1. 
○ A true exponent of +127 (the maximum) would be stored as 127+127=254. 

● Benefits of Biased Exponent: 
○ Simplified Comparison: When comparing two floating-point numbers, if their 

signs are the same, a simple unsigned integer comparison of their biased 
exponent fields (followed by mantissa comparison) will correctly determine 
which number is larger. This is because a larger biased exponent directly 
corresponds to a larger true exponent and thus a larger magnitude. 

○ No Special Handling for Negative Exponents: The hardware logic for 
handling the exponent becomes simpler as it operates only on unsigned 
numbers. 

○ Consistent Sorting: Numbers can be sorted lexicographically (like text 
strings) based on their sign, then biased exponent, then mantissa, which 
generally holds true for their numerical values (with caveats for negative 
numbers). 

4.5 IEEE 754 Floating Point Formats 
The IEEE 754 standard (formally ANSI/IEEE Std 754-1985, later revised as IEEE 754-2008 
and IEEE 754-2019) is a cornerstone of modern computing. It is the universally accepted 
technical standard for floating-point computation, defining consistent representations and 
arithmetic operations across diverse computer systems and programming languages. Its 
adoption ensures that floating-point calculations produce predictable and reproducible 
results, which is critical for portability and reliability in numerical software. 

Single-Precision (32-bit) Format 

The IEEE 754 single-precision format uses a total of 32 bits to represent a floating-point 
number. 

● Bit Allocation: 
○ Sign Bit (1 bit): This is the most significant bit (bit 31). 

■ 0 indicates a positive number. 
■ 1 indicates a negative number. 



○ Exponent Field (8 bits): These bits (from bit 30 down to bit 23) store the 
biased exponent. 

■ The bias for single-precision is 127. 
■ The actual value of the true exponent is calculated as: True_Exponent 

= Stored_Exponent - 127. 
■ The range of stored exponents is 00000000_2 (0) to 11111111_2 

(255). However, the values 0 (all zeros) and 255 (all ones) are 
reserved for special cases (explained below). 

■ Therefore, for normal numbers, the Stored_Exponent ranges from 1 to 
254, meaning the True_Exponent ranges from 1−127=−126 to 
254−127=+127. 

○ Mantissa (Significand) Field (23 bits): These bits (from bit 22 down to bit 0) 
store the fractional part of the mantissa. 

■ Implied Leading 1: For normalized numbers (the vast majority of 
representable numbers), there is an implied leading 1 before the 
binary point. So, the actual mantissa value is 1.f_22f_21...f_0, where 
f_i are the bits stored in the mantissa field. This effectively gives a 
24-bit precision (1textimpliedbit+23textstoredbits). 

● Range and Precision (for normalized numbers): 
○ Smallest Positive Normalized Number: When the true exponent is -126 

(stored as 1) and the mantissa is 1.00...0_2. This results in approximately 
1.18times10−38. 

○ Largest Positive Normalized Number: When the true exponent is +127 
(stored as 254) and the mantissa is 1.11...1_2. This results in approximately 
3.40times1038. 

○ Precision: With an effective 24-bit mantissa, single-precision numbers can 
represent about 6 to 7 decimal digits of precision reliably. This means if you 
write a decimal number with 7 significant digits, it can usually be represented 
exactly (or very close to exactly). 

● Special Values (defined by reserved exponent values): 
○ Zero (pm0.0): Represented by an exponent field of all zeros (00000000) and 

a mantissa field of all zeros. The sign bit distinguishes between +0.0 and 
-0.0, though they typically compare as equal. 

○ Infinity (pminfty): Represented by an exponent field of all ones (11111111) 
and a mantissa field of all zeros. The sign bit indicates positive or negative 
infinity. Infinity results from operations like division by zero (e.g., 1.0/0.0). 

○ NaN (Not a Number): Represented by an exponent field of all ones 
(11111111) and a non-zero mantissa field. NaNs are used to represent the 
results of invalid or indeterminate operations, such as 0.0/0.0, infty−infty, or 
sqrt−1. NaNs are "sticky" – once a NaN is produced, most operations 
involving it will also result in a NaN. There are two types: Quiet NaN (QNaN) 
and Signaling NaN (SNaN). QNaNs propagate without signalling, while 
SNaNs typically raise an exception when accessed. 

○ Denormalized (or Subnormal) Numbers: Represented by an exponent field 
of all zeros (00000000) and a non-zero mantissa field. Unlike normalized 
numbers, these numbers have an implied leading 0 (i.e., 
0.f_22f_21...f_0times2textTrue_Exponent_Min). They are used to represent 
numbers very close to zero that would otherwise "underflow" directly to zero. 



Denormalized numbers allow for "gradual underflow," meaning the precision 
gracefully degrades as numbers approach zero, which helps in preventing 
unexpected errors in certain algorithms. The smallest denormalized number is 
smaller than the smallest normalized number. 

Double-Precision (64-bit) Format 

The IEEE 754 double-precision format uses 64 bits, offering a significantly wider range and 
much higher precision compared to single-precision. 

● Bit Allocation: 
○ Sign Bit (1 bit): Bit 63. 
○ Exponent Field (11 bits): Bits 62-52. 

■ The bias for double-precision is 1023. 
■ The Stored_Exponent ranges from 0 to 2047. Reserved values are 0 

(for zeros and denormals) and 2047 (for infinities and NaNs). 
■ For normal numbers, True_Exponent ranges from 1−1023=−1022 to 

2046−1023=+1023. 
○ Mantissa (Significand) Field (52 bits): Bits 51-0. 

■ Implied Leading 1: Similar to single-precision, there is an implied 
leading 1 for normalized numbers, resulting in an effective 53-bit 
mantissa (1textimpliedbit+52textstoredbits). 

● Extended Range and Precision (for normalized numbers): 
○ Smallest Positive Normalized Number: Approximately 2.22times10−308. 
○ Largest Positive Normalized Number: Approximately 1.80times10308. 
○ Precision: With an effective 53-bit mantissa, double-precision numbers can 

represent about 15 to 17 decimal digits of precision reliably. This makes 
them suitable for demanding scientific and engineering calculations where 
accuracy is paramount. 

Floating Point Arithmetic Operations 

Floating-point arithmetic is considerably more involved and computationally intensive than 
integer arithmetic. This is due to the separate exponent and mantissa components, the need 
for alignment, normalization, and precise rounding. These operations are typically handled 
by a dedicated hardware unit called the Floating-Point Unit (FPU), which may be integrated 
into the main CPU or exist as a separate co-processor. 

● Addition and Subtraction: 
These are the most complex floating-point operations. 

1. Extract Components: The sign, exponent, and mantissa are extracted from 
both operands. 

2. Handle Special Cases: Check for operands being zero, infinity, or NaN. If 
any are present, special rules apply (e.g., X+infty=infty). 

3. Align Exponents: For addition/subtraction, the exponents must be the same. 
The mantissa of the number with the smaller exponent is shifted right until its 
exponent matches the larger exponent. Each right shift of the mantissa 



effectively divides the number by 2, and incrementing the exponent multiplies 
it by 2, maintaining the number's value. This process ensures the binary 
points are aligned before addition/subtraction. 

■ Example: Adding (1.011_2times25) and (1.101_2times23). The 
second number has a smaller exponent. To match the exponent of 5, 
we shift its mantissa right by 5−3=2 positions: 
1.101_2times23=0.01101_2times25. 

4. Add/Subtract Mantissas: Once exponents are aligned, the mantissas are 
added or subtracted as if they were integers (using an integer 
adder/subtractor). The sign of the result is determined. 

5. Normalize Result: The result of the mantissa operation might not be 
normalized (e.g., it might be 0.xxxx_2 if it underflowed, or 10.xxxx_2 if it 
overflowed during addition). The mantissa is then shifted left or right, and the 
exponent is adjusted accordingly, until the mantissa is in the 1.xxxx_2 
normalized form. 

6. Round Result: After normalization, the result's mantissa may have more bits 
than the target format (e.g., 23 bits for single-precision). The mantissa must 
be rounded to fit the available precision according to the chosen rounding 
mode. 

7. Check for Over/Underflow: After rounding and final normalization, the 
exponent is checked to ensure it falls within the representable range. If it's too 
large, the result becomes pminfty. If it's too small, it might become a 
denormalized number or pm0.0. 

● Multiplication and Division: 
These operations are generally simpler than addition/subtraction because exponent 
alignment is not required in the same way. 

1. Extract Components: Separate sign, exponent, and mantissa. 
2. Handle Special Cases: Check for zeros, infinities, NaNs. 
3. Multiply/Divide Signs: The sign of the result is determined by XORing the 

sign bits of the two operands. (Same signs rightarrow positive (0); Different 
signs rightarrow negative (1)). 

4. Add/Subtract Exponents: 
■ For Multiplication: The true exponents are added. To account for the 

bias, the formula is usually: Result_Exponent_Biased = (Exp1_Biased 
+ Exp2_Biased) - Bias. 

■ For Division: The true exponents are subtracted. The formula is 
usually: Result_Exponent_Biased = (Exp1_Biased - Exp2_Biased) + 
Bias. 

5. Multiply/Divide Mantissas: The mantissas are multiplied or divided as if they 
were unsigned integers. This typically produces a mantissa result with double 
the precision of the input mantissas (e.g., 24-bit * 24-bit multiplication yields a 
48-bit product). 

6. Normalize Result: The resulting mantissa is normalized (shifted and 
exponent adjusted). 

7. Round Result: The normalized mantissa is rounded to the target format's 
precision. 

8. Check for Over/Underflow: Verify that the final exponent is within the valid 
range, otherwise set the result to pminfty, pm0.0, or a denormalized number. 



Rounding Modes 

The IEEE 754 standard specifies four primary rounding modes to manage the precision 
limitation when an exact result cannot be represented: 

● Round to Nearest Even (RoundTiesToEven): This is the default and most 
commonly used rounding mode. It rounds the result to the nearest representable 
floating-point number. If the exact result falls precisely halfway between two 
representable numbers, it rounds to the one whose least significant bit (LSB) of the 
mantissa is 0 (i.e., the "even" one). This strategy helps to prevent a cumulative bias 
in a long sequence of operations (e.g., consistently rounding up) by ensuring that 
roughly half the time, halfway cases round down, and half the time they round up. 

● Round to Zero (Chop/Truncate): This mode rounds the result towards zero. This 
means simply discarding (truncating) any bits beyond the specified precision. For 
positive numbers, it effectively rounds down; for negative numbers, it effectively 
rounds up towards zero. This is often the fastest rounding mode but introduces a 
consistent bias towards zero. 

● Round to Plus Infinity (RoundUp): This mode rounds the result towards positive 
infinity. For any unrounded result, it rounds to the smallest representable 
floating-point number that is greater than or equal to the unrounded value. 

● Round to Minus Infinity (RoundDown): This mode rounds the result towards 
negative infinity. For any unrounded result, it rounds to the largest representable 
floating-point number that is less than or equal to the unrounded value. 

Impact of Floating Point Arithmetic on Numerical Accuracy and Precision 

While indispensable, floating-point arithmetic introduces inherent limitations that must be 
understood to avoid common pitfalls in numerical computation: 

● Finite Precision: Floating-point numbers represent a continuous range of real 
numbers using a finite number of bits. This means that only a discrete subset of real 
numbers can be represented exactly. Most real numbers, especially irrational 
numbers (like pi or sqrt2) or even simple decimal fractions that do not have a finite 
binary representation (like 0.1), cannot be stored precisely. They are instead 
approximated by the closest representable floating-point number. 

● Rounding Errors: Due to this finite precision, almost every arithmetic operation on 
floating-point numbers involves some degree of rounding. These small rounding 
errors, though tiny individually, can accumulate over a long sequence of 
computations. This accumulation can lead to a significant loss of accuracy in the final 
result, especially in iterative algorithms or when many operations are performed. 

● Loss of Significance (Catastrophic Cancellation): A particularly problematic form 
of rounding error occurs when two floating-point numbers of nearly equal magnitude 
are subtracted. The most significant bits, which are identical, cancel each other out, 
leaving a result with far fewer significant digits. The remaining bits (the less 
significant ones) may then largely consist of accumulated rounding errors from prior 
operations, leading to a drastically reduced effective precision and a highly 
inaccurate result. For example, (1.0000001times105)−(1.0000000times105) should 
be (0.0000001times105), but the subtraction loses most of the precise bits. 



● Non-Associativity of Addition/Multiplication: Unlike true real number arithmetic, 
floating-point arithmetic is not always strictly associative. This means that (A+B)+C 
might not yield precisely the same result as A+(B+C) due to intermediate rounding. 
The order of operations can influence the final accuracy. 

● Limited Exact Integer Representation: While floating-point numbers can represent 
integers, they can only do so exactly up to a certain magnitude (e.g., up to 224 for 
single-precision, or 253 for double-precision). Beyond this range, integers also 
become subject to rounding when stored as floating-point numbers, as the gaps 
between representable floating-point numbers become larger than 1. 

● Special Values and Their Behavior: The existence of pminfty and NaN means that 
mathematical operations can produce non-numerical results. This necessitates 
careful handling in software to prevent these special values from propagating 
unexpectedly and invalidating further computations. 

Understanding these implications is paramount for anyone working with numerical data in 
computing. Programmers and engineers must be aware of the potential for numerical 
instability and use techniques like numerical analysis, higher-precision data types (if 
available), or specifically designed algorithms to mitigate the effects of limited precision and 
rounding errors in critical applications. 
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